Ilmu Dasar Teknik Sipil
  • HOME
  • Kontak
  • Disclaimer
  • Privacy policy
  • terms of service
  • Home
  • Struktur
    • GEDUNG
    • JEMBATAN
    • JALAN
    • BANGUNAN AIR
  • BAHAN
    • BETON
    • BAJA
    • KAYU
  • PROGRAM
    • SAP 2000
    • AUTOCAD
    • HEC RAS
    • PLAXIS
    • MICROSOFT PROJECT
  • TEKNIK FONDASI
    • FONDASI RUMAH
    • FOOTPLATE
    • BORPILE
  • LAINNYA
    • TEKNIK GEMPA
    • GEOTEKNIK
    • MANAJEMEN
    • MEKANIKA TANAH
  • Daftar Isi

Jumat, 31 Maret 2017

JENIS SISTEM STRUKTUR JEMBATAN

Pada artikel ini kita akan mencari tempe dan tahu tentang jembatan berdasarkan sistem strukturnya. oke langsung saja saya beritahu tentang jembatan jika ditinjau dari sistem strukturnya maka jembatan dapat dibedakan menjadi, sebagai berikut :
1.      Jembatan lengkung (arch bridge)
Gambar 1. Contoh jembatan lengkung
Pelengkung adalah bentuk struktur non linier yang mempunyai kemampuan sangat tinggi terhadap respon momen lengkung. Yang membedakan bentuk pelengkung dengan bentuk – bentuk lainnya adalah bahwa kedua perletakan ujungnya berupa sendi sehingga pada perletakan tidak diijinkan adanya pergerakan kearah horisontal. Bentuk Jembatan lengkung hanya bisa dipakai apabila tanah pendukung kuat dan stabil. Jembatan tipe lengkung lebih efisien digunakan untuk jembatan dengan panjang bentang 100 – 300 meter.

2.      Jembatan gelagar (beam bridge)
Gambar 2. Contoh jembatan gelagar
Jembatan bentuk gelagar terdiri lebih dari satu gelagar tunggal yang terbuat dari beton, baja atau beton prategang. Jembatan jenis ini dirangkai dengan menggunakan diafragma, dan umumnya menyatu secara kaku dengan pelat yang merupakan lantai lalu lintas. Jembatan ini digunakan untuk variasi panjang bentang 5 – 40 meter.

3.      Jembatan Kabel (cable-stayed)
Gambar 3. Contoh jembatan cable – stayed
Jembatan cable-stayed menggunakan kabel sebagai elemen pemikul lantai lalu lintas. Pada cable-stayed kabel langsung ditumpu oleh tower. Jembatan cable-stayed merupakan gelagar menerus dengan tower satu atau lebih yang terpasang diatas pilar – pilar jembatan ditengah bentang. Jembatan cable-stayed memiliki titik pusat massa yang relatif rendah posisinya sehingga jembatan tipe ini sangat baik digunakan pada daerah dengan resiko gempa dan digunakan untuk variasi panjang bentang 100 - 600 meter.

4.      Jembatan gantung (suspension bridge)
Gambar 4.Contoh jembatan gantung
Sistem struktur dasar jembatan gantung berupa kabel utama (main cable) yang memikul kabel gantung (suspension bridge). Lantai lalu lintas jembatan biasanya tidak terhubungkan langsung dengan pilar, karena prinsip pemikulan gelagar terletak pada kabel.
Apabila terjadi beban angin dengan intensitas tinggi jembatan dapat ditutup dan arus lalu lintas dihentikan. Hal ini untuk mencegah sulitnya mengemudi kendaraan dalam goyangan yang tinggi. Pemasangan gelagar jembatan gantung dilaksanakan setelah sistem kabel terpasang, dan kabel sekaligus merupakan bagian dari struktur launching jembatan. Jembatan ini umumnya digunakan untuk panjang bentang sampai 1400 meter.

5.      Jembatan Beton Prategang (prestressed concrete bridge)
Gambar 5. Contoh jembatan beton prategang
Jembatan beton prategang merupakan suatu perkembangan mutakhir dari bahan beton. Pada Jembatan beton prategang diberikan gaya prategang awal yang dimaksudkan untuk mengimbangi tegangan yang terjadi akibat beban. Jembatan beton prategang dapat dilaksanakan dengan dua sistem yaitu post tensioning dan pre tensioning. Pada sistem post tensioning tendon prategang ditempatkan di dalam duct setelah beton mengeras dan transfer gaya prategang dari tendon pada beton dilakukan dengan penjangkaran di ujung gelagar. Pada pre tensioning beton dituang mengelilingi tendon prategang yang sudah ditegangkan terlebih dahulu dan transfer gaya prategang terlaksana karena adanya ikatan antara beton dengan tendon. Jembatan beton prategang sangat efisien karena analisa penampang berdasarkan penampang utuh. Jembatan jenis ini digunakan untuk variasi bentang jembatan 20 - 40 meter.

6.      Jembatan rangka (truss bridge)
Gambar 6. Contoh jembatan rangka (truss bridge)
Jembatan rangka umumnya terbuat dari baja, dengan bentuk dasar berupa segitiga. Elemen rangka dianggap bersendi pada kedua ujungnya sehingga setiap batang hanya menerima gaya aksial tekan atau tarik saja. Jembatan rangka merupakan salah satu jembatan tertua dan dapat dibuat dalam beragam variasi bentuk, sebagai gelagar sederhana, lengkung atau kantilever. Jembatan ini digunakan untuk variasi panjang bentang 50 – 100 meter.


7.      Jembatan box girder

Gambar 7. Contoh jembatan box girder
Jembatan box girder umumnya terbuat dari baja atau beton konvensional maupun prategang. box girder terutama digunakan sebagai gelagar jembatan, dan dapat dikombinasikan dengan sistem jembatan gantung, cable-stayed maupun bentuk pelengkung. Manfaat utama dari box girder adalah momen inersia yang tinggi dalam kombinasi dengan berat sendiri yang relatif ringan karena adanya rongga ditengah penampang. box girder dapat diproduksi dalam berbagai bentuk, tetapi bentuk trapesium adalah yang paling banyak digunakan. Rongga di tengah box memungkinkan pemasangan tendon prategang diluar penampang beton. Jenis gelagar ini biasanya dipakai sebagai bagian dari gelagar segmental, yang kemudian disatukan dengan sistem prategang post tensioning. Analisa full prestressing suatu desain dimana pada penampang tidak diperkenankan adanya gaya tarik, menjamin kontinuitas dari gelagar pada pertemuan segmen. Jembatan ini digunakan untuk variasi panjang bentang 20 – 40 meter. 

Sekian dan terimakasih, semoga bermanfaat ya !! ☝😁 
Jefri Harjawinata tanggal : Maret 31, 2017 4 komentar
Berbagi

Tipe Jembatan Berdasarkan Bahan Bangunanan

TIPE JEMBATAN BERDASARKAN BAHAN

Ngomongin tentang jembatan, sebenarnya sangat luas, seluas cintaku padamu 😍, (iya kamuuu) 😝 makanya pada artikel kali ini saya mau cerita sedikit tentang jenis-jenis jembatan berdasarkan  bahan bangunannya dulu ya !! Jembatan dapat dikelompokkan sebagi berikut :
1.      Jembatan kayu

Gambar 1. Jembatan Kayu
Jembatan kayu merupakan jembatan sederhana yang mempunyai panjang relatif pendek dengan beban yang diterima relatif ringan. Meskipun pembuatannya menggunakan bahan utama kayu, struktur dalam perencanaan atau pembuatannya harus memperhatikan dan mempertimbangkan ilmu gaya (mekanika).

2.      Jembatan pasangan batu dan batu bata

Gambar 2. Contoh Jembatan Batu
Jembatan pasangan batu dan bata merupakan jembatan yang konstruksi utamanya terbuat dari batu dan bata. Untuk membuat jembatan dengan  batu dan bata umumnya konstruksi jembatan harus dibuat melengkung. Seiring perkembangan jaman jembatan ini sudah tidak digunakan lagi.

3.      Jembatan beton bertulang dan jembatan beton prategang (prestressed concrete bridge)
Gambar 3. Jembatan dari Beton Bertulang
Jembatan dengan beton bertulang pada umumnya hanya digunakan untuk bentang jembatan yang pendek. Untuk bentang yang panjang seiring dengan perkembangan jaman ditemukan beton prategang. Dengan beton prategang bentang jembatan yang panjang dapat dibuat dengan mudah.

4.      Jembatan Baja
Gambar 4. Contoh jembatan dari Baja
Jembatan baja pada umumnya digunakan untuk jembatan dengan bentang yang panjang dengan beban yang diterima cukup besar. Seperti halnya beton prategang, penggunaan jembatan baja banyak digunakan dan bentuknya lebih bervariasi, karena dengan jembatan baja bentang yang panjang biayanya lebih ekonomis.

5.      Jembatan Komposit

Gambar 5. Contoh jembatan komposit
Jembatan komposit merupakan perpaduan antara dua bahan yang sama atau berbeda dengan memanfaatkan sifat menguntungkan dari masing – masing bahan tersebut, sehingga kombinasinya akan menghasilkan elemen struktur yang lebih efisien. Ditinjau dari fungsinya maka jembatan dapat dibedakan menjadi :
a.       Jembatan jalan raya (highway bridge)
Jembatan yang direncanakan untuk memikul beban lalu lintas kendaraan baik kendaraan berat maupun ringan. Jembatan jalan raya ini menghubungkan antara jalan satu ke jalan lainnya.
b.      Jembatan penyeberangan (foot bridge)
Jembatan yang digunakan untuk penyeberangan jalan. Fungsi dari jembatan ini yaitu untuk memberikan ketertiban pada jalan yang dilewati jembatan penyeberangan tersebut dan memberikan keamanan serta mengurangi faktor kecelakaan bagi penyeberang jalan.
c.       Jembatan kereta api (railway bridge)
Jembatan yang dirancang khusus untuk dapat dilintasi kereta api. Perencanaan jembatan ini dari jalan rel kereta api, ruang bebas jembatan, hingga beban yang diterima oleh jembatan disesuaikan dengan kereta api yang melewati jembatan tersebut.
d.      Jembatan darurat
Jembatan darurat adalah jembatan yang direncanakan dan dibuat untuk kepentingan darurat dan biasanya dibuat hanya sementara. Umumnya jembatan darurat dibuat pada saat pembuatan jembatan baru dimana jembatan lama harus dilakukan pembongkaran, dan jembatan darurat dapat dibongkar setelah jembatan baru dapat berfungsi.
 Ditinjau dari sistem strukturnya maka jembatan dapat dibedakan menjadi : 
  1. Jembatan lengkung (arch bridge)
  2. Jembatan gelagar (beam bridge)
  3. Jembatan Kabel (cable-stayed)
  4. Jembatan gantung (suspension bridge)
  5. Jembatan beton prategang (prestressed concrete bridge)
  6. Jembatan rangka (truss bridge)
  7. Jembatan box girder

Untuk lebih jelas tentang jenis jembatan berdasarkan sistem struktur, dapat dibaca di artikel ini  Jenis Sistem Struktur Jembatan



Jefri Harjawinata tanggal : Maret 31, 2017 0 komentar
Berbagi

Jembatan Sebagai Sistem Transportasi

Jembatan Baja, Sydney

Jembatan mempunyai arti penting bagi setiap orang. Akan tetapi tingkat kepentingannya tidak sama bagi tiap orang, sehingga akan menjadi suatu bahan studi yang menarik. Suatu jembatan tunggal diatas sungai kecil akan dipandang berbeda oleh tiap orang, sebab penglihatan/ pandangan masing-masing orang yang melihat berbeda pula. Seseorang yang melintasi jembatan setiap hari pada saat pergi bekerja, hanya dapat melintasi sungai bila ada jembatan, dan ia menyatakan bahwa jembatan adalah sebuah jalan yang diberi sandaran pada tepinya. Tentunya bagi seorang pemimpin pemerintahan dan dunia bisnis akan memandang hal yang berbeda pula.
Dari keterangan diatas, dapat dilihat bahwa jembatan merupakan suatu sistem transportasi untuk tiga hal, yaitu:
1. Merupakan pengontrolan kapasitas dari sistem,
2. Mempunyai biaya tertinggi per mil dari sistem,
3. Jika jembatan runtuh, sistem akan lumpuh.
Bila lebar jembatan kurang lebar untuk menampung jumlah jalur yang diperlukan oleh lalu lintas, jembatan akan menghambat laju lalu lintas. Dalam hal ini jembatan akan menjadi pengontrol volume dan berat lalu lintas yang dapat dilayani oleh sistem transportasi. Oleh karena itu, jembatan dapat dikatakan mempunyai fungsi keseimbangan (balancing) dari sistem transportasi Pada saat yang penting untuk membangun jembatan, akan muncul pertanyaan: Jenis jembatan apa yang tepat untuk dibangun? Dari catatan desain, ada banyak kemungkinan. Sehingga kreativitas dan kemampuan perencana memainkan peranan besar dalam menjawab pertanyaan di atas. Kreativitas perencana jembatan seharusnya didasarkan pada disiplin bidang rekayasa (engineering). Hal tersebut juga penting untuk sebagai bahan masukan dalam penentuan material yang akan digunakan dalam pembangunan jembatan sebelum proses perencanaan. Selain hal-hal tersebut di atas juga penting bagi perencana dalam mengumpulkan dan menganalisis data jembatan yang pernah dibangun dan mengaplikasikannya berdasarkan hasil analisis yang telah dibuatnya. Pengetahuan akan teknik jembatan dan pengalaman praktis di lapangan juga memiliki nilai masukan yang sangat berarti. Oleh sebab itu tinjauan terhadap perspektif sejarah merupakan aspek yang tidak boleh diabaikan. Pada buku ini tidak meninjau secara keseluruhan tipe jembatan yang pernah dibangun sepanjang sejarah peradaban manusia, tetapi akan disajikan beberapa tipe dan konsep dasar asal mula jembatan.
Jembatan yang merupakan bagian jalan yg sangat penting sebagai suatu prasarana transportasi harus memenuhi persyaratan berikut : 

  1. Keamanan,
  2. Kenyamanan,
  3. Estetika,
  4. Keawetan,
  5. Kemudahan Pengerjaan 
  6. Ekonomis
Kenapa keamanan di no 1 ? iya donk, karena adminnya orang teknik sipil. coba kalau adminya orang ekonomi, bisa jadi Ekonomis dulu yang pertama 😋 hahaha......
Sekian sedikit penjelasan tentang fungsi jembatan sebagai sarana transportasi ya, semoga bisa bermanfaat, jangan lupa lihat artikel menarik lainnya guys !!
Jefri Harjawinata tanggal : Maret 31, 2017 0 komentar
Berbagi

Kamis, 30 Maret 2017

Struktur Atas dan Struktur Bawah

hallo bro/sist, kita mau bahas tentang struktur atas dan bawah nih 😄 kalau kamu lebih suka yang mana, atas atau bawah ?? 😜 haha......
waktu awal saya kuliah, dikasih tugas seperti ini, yaitu jelaskan pengertian dan komponen - komponen struktur atas dan bawah, siapa tau aja kalian juga dikasih tugas yang sama, nah langsung diserap aja !!

Pengertian Struktur Atas
Struktur atas suatu gedung adalah seluruh bagian struktur gedung yang berada di atas muka tanah. Struktur atas ini terdiri atas kolom, pelat, balok dan dinding geser, yang masing-masing mempunyai peran yang sangat penting.
Komponen – komponen Struktus Atas Gedung
1.      Kolom
Kolom merupakan komponen yang memiliki peran penting dalam suatu bangunan. Keruntuhan pada kolom merupakan lokasi paling kritis yang dapat menyebabkan keruntuhan pada bangunan. Fungsi kolom adalah penerus beban seluruh bangunan ke pondasi. Kolom termasuk struktur utama untuk meneruskan berat bangunan dan beban lain seperti beban hidup , serta beban hembusan angin. Kolom berfungsi sangat penting, agar bangunan tidak mudah roboh.
Struktur dalam kolom dibuat dari besi dan beton. Keduanya merupakan gabungan antara material yang tahan tarikan dan tekanan. Besi adalah material yang tahan tarikan, sedangkan beton adalah material yang tahan tekanan. Gabungan kedua material ini dalam struktur beton memungkinkan kolom atau bagian struktural lain seperti sloof dan balok bisa menahan gaya.



A.      Prinsip Kerja Kolom
Elemen struktur kolom yang mempunyai nilai perbandingan antara panjang dan dimensi penampang melintangnya relatif kecil disebut kolom pendek. Kapasitas pikul-beban kolom pendek tidak tergantung pada panjang kolom dan bila mengalami beban berlebihan, maka kolom pendek pada umumnya akan gagal karena hancurnya material. Dengan demikian, kapasitas pikul-beban batas tergantung pada kekuatan material yang digunakan. Semakin panjang suatu elemen tekan, proporsi relatif elemen akan berubah hingga mencapai keadaan yang disebut elemen langsing. Perilaku elemen langsing sangat berbeda dengan elemen tekan pendek. Perilaku elemen tekan panjang terhadap beban tekan adalah apabila bebannya kecil, elemen masih dapat mempertahankan bentuk liniernya, begitu pula apabila bebannya bertambah. Pada saat beban mencapai nilai tertentu, elemen tersebut tiba-tiba tidak stabil dan berubah bentuk.
Hal inilah yang dibuat fenomena tekuk (buckling) apabila suatu elemen struktur (dalam hal ini adalah kolom) telah menekuk, maka kolom tersebut tidak mempunyai kemampuan lagi untuk menerima beban tambahan. Sedikit saja penambahan beban akan menyebabkan elemen struktur tersebut runtuh. Dengan demikian, kapasitas pikul-beban untuk elemen struktur kolom itu adalah besar beban yang menyebabkan kolom tersebut mengalami tekuk awal. Struktur yang sudah mengalami tekuk tidak mempunyai kemampuan layan lagi. Fenomena tekuk adalah suatu ragam kegagalan yang diakibatkan oleh ketidakstabilan suatu elemen struktur yang dipengaruhi oleh aksi beban. Kegagalan yang diakibatkan oleh ketidakstabilan dapat terjadi pada berbagai material. Pada saat tekuk terjadi, taraf gaya internal bisa sangat rendah. Fenomena tekuk berkaitan dengan kekakuan elemen struktur. Suatu elemen yang mempunyai kekakukan kecil lebih mudah mengalami tekuk dibandingkan dengan yang mempunyai kekakuan besar. Semakin panjang suatu elemen struktur, semakin kecil kekakuannya.
Banyak faktor yang mempengaruhi beban tekuk (Pcr) pada suatu elemen struktur tekan panjang. Faktor-faktor tersebut adalah sebagai berikut :
·         Panjang Kolom
Pada umumnya, kapasitas pikul-beban kolom berbanding terbalik dengan kuadrat panjang elemennya. Selain itu, faktor lain yang menentukan besar beban tekuk adalah yang berhubungan dengan karakteristik kekakuan elemen struktur (jenis material, bentuk, dan ukuran penampang).
·         Kekakuan
Kekakuan elemen struktur sangat dipengaruhi oleh banyaknya material dan distribusinya. Pada elemen struktur persegi panjang, elemen struktur akan selalu menekuk pada arah seperti yang diilustrasikan pada di bawah bagian (a). Namun bentuk berpenampang simetris (misalnya bujursangkar atau lingkaran) tidak mempunyai arah tekuk khusus seperti penampang segiempat. Ukuran distribusi material (bentuk dan ukuran penampang) dalam hal ini pada umumnya dapat dinyatakan dengan momen inersia (I).

·         Kondisi Ujung Elemen
Apabila ujung-ujung kolom bebas berotasi, kolom tersebut mempunyai kemampuan pikul-beban lebih kecil dibandingkan dengan kolom sama yang ujung-ujungnya dijepit. Adanya tahanan ujung menambah kekakuan sehingga juga meningkatkan kestabilan yang mencegah tekuk. Mengekang (menggunakan bracing) suatu kolom pada suatu arah juga meningkatkan kekakuan. Fenomena tekuk pada umumnya menyebabkan terjadinya pengurangan kapasitas pikul-beban elemen tekan. Beban maksimum yang dapat dipikul kolom pendek ditentukan oleh hancurnya material, bukan tekuk.

2.      Balok
Balok juga merupakan salah satu pekerjaan beton bertulang. Balok merupakan bagian struktur yang digunakan sebagai dudukan lantai dan pengikat kolom lantai atas. Fungsinya adalah sebagai rangka penguat horizontal bangunan akan beban-beban. Balok juga memiliki beberapa jenis yaitu :
·         Balok sederhana, balok yang bertumpu pada kolom ujung-ujungnya, dengan satu ujung bebas berotasi dan tidak memiliki momen tahan. Seperti struktur statis lainya nilai dari semua reaksi pergeseran dan momen untuk balok sederhana adalah tidak tergantung bentuk penampang material.
·         Balok Kantilever, balok yang diproyeksikan atau struktur kaku lainnya didukung dengan hanya satu ujung tetap.
·         Balok Teritisan, balok sederhanya yang memanjang yang melewati kolom tumpuannya.
·         Balok Bentang Tersuspensi, balok sederhana yang ditopang oleh teristisan dari dua bentang dengan konstruksi sambungan pin pada momen nol.
·         Balok Kontinu, balok yang memanjang secara menerus melewati lebih dari dua kolom tumpuan untuk menghasilkan kekakuan yang lebih besar dan momen yang lebih kecil dari serangkaian balok tidak menerus dengan beban yang sama.
Balok terbagi beberapa macam yaitu:
a)      Balok Kayu
Balok kayu menopang papan atau dek structural. Balok dapat ditopang oleh balok induk, tiang, atau dinding penopang beban.

b)      Balok Baja
Balok baja menopang dek baja atau papan beton pracetak. Balok dapat ditopang oleh balok induk ( girder ), kolom, atau dinding penopang beban.

c)      Balok Beton
Pelat beton yang dicor di tempat dikategorikan menurut bentangan dan bentuk cetakannya.


3.      Plat Lantai

Plat lantai adalah lantai yang tidak terletak di atas tanah langsung, jadi merupakan lantai tingkat. Plat lantai ini didukung oleh balok-balok yang bertumpu pada kolom-kolom bangunan.
Ketebalan plat lantai di tentukan oleh :
·         Besar lendutan yang diijinkan.
·         Lebar bentangan atau jarak antara balok-balok pendukung.
·         Bahan konstruksi dan plat lantai.
Berdasarkan aksi strukturalnya, pelat dibedakan menjadi empat, yaitu :
a)      Plat Kaku
Pelat kaku merupakan pelat tipis yang memilikki ketegaran lentur (flexural rigidity), dan memikul beban dengan aksi dua dimensi, terutama dengan momen dalam (lentur dan puntir) dan gaya geser transversal, yang umumnya sama dengan balok. Pelat yang dimaksud dalam bidang teknik adalah pelat kaku, kecuali jika dinyatakan lain.
b)      Membran
Membran merupakan pelat tipis tanpa ketegaran lentur dan memikul beban lateral dengan gaya geser aksial dan gaya geser terpusat. Aksi pemikul beban ini dapat didekati dengan jaringan kabel yang tegang karena ketebalannya yang sangat tipis membuat daya tahan momennya dapat diabaikan.
c)      Plat Fleksibel
Pelat flexibel merupakan gabungan pelat kaku dan membran dan memikul beban luar dengan gabungan aksi momen dalam, gaya geser transversal dan gaya geser terpusat, serta gaya aksial. Struktur ini sering dipakai dalam industri ruang angkasa karena perbandingan berat dengan bebannya menguntungkan.
d)     Plat Tebal
Pelat tebal merupakan pelat yang kondisi tegangan dalamnya menyerupai kondisi kontinu tiga dimensi.

4.      Dinding Geser
Dinding Geser (shear wall) adalah suatu struktur balok kantilever tipis yang langsing vertikal, untuk digunakan menahan gaya lateral. Biasanya dinding geser berbentuk persegi panjang, Box core suatu tangga, elevator atau shaft lainnya. Dan biasanya diletakkan di sekeliling lift, tangga atau shaft guna menahan beban lateral tanpa mengganggu penyusunan ruang dalam bangunan.

Usaha untuk memonolitkan antara profil dengan beton pada struktur dinding geser, diberikan kabel pada dinding yang berupa baja mutu tinggi. Dengan pemberian profil sebagai tambahan untuk pengaku dalam menahan gaya lateral. Dinding geser dengan penambahan profil memberikan hasil kapasitas yang jauh lebih besar dibandingkan penampang dinding geser biasa dengan selisih beda 100% yang bisa dilihat pada diagram interaksi momen (Mn) dan beban axial(Pn). Perbedaan tersebut didapat dengan menarik garis linear pada diagram tersebut. 
Dengan adanya dinding geser yang kaku pada bangunan, sebagian besar beban gempa akan terserap oleh dinding geser tersebut. Perencanaan geser pada dinding structural untuk bangunan tahan gempa didasarkan pada besarnya gaya dalam yang terjadi akibat beban gempa. Namun, dalam prakteknya masih terdapat keraguan akan keandalan hasil desain dinding geser berdasarkan konsep ini. Hal ini menyebab kan masih disyaratkannya konsep desain kapasitas untuk perencanaan dinding geser dalam berbagai proyek gedung tinggi di Indonesia. Menurut konsep desain kapasitas, kuat geser dinding didesain berdasarkan momen maksimum yang paling mungkin terjadi di dasar dinding.
Dalam prakteknya dinding geser selalu dihubungkan dengan system rangka pemikul momen pada gedung. Dinding struktural yang umum digunakan pada gedung tinggi adalah dinding geser kantilever dan dinding geser berangkai. Dinding geser beton bertulang kantilever adalah suatu subsistem struktur gedung yang fungsi utamanya adalah untuk memikul beban geser akibat pengaruh gempa rencana. Kerusakan pada dinding ini hanya boleh terjadi akibat momen lentur (bukan akibat gaya geser), melalui pembentukkan sendi plastis di dasar dinding.

5.      Atap
Atap adalah bagaian paling atas dari suatu bangunan, yang melilndungi gedung dan penghuninya secara fisik maupun metafisik (mikrokosmos/makrokosmos).
Permasalahan atap tergantung pada luasnya ruang yang harus dilindungi, bentuk dan konstruksi yang dipilih, dan lapisan penutupnya. Di daerah tropis atap merupakan salah satu bagian terpenting. Struktur atap terbagi menjadi rangka atap dan penopang rangka atap. Rangka atap berfungsi menahan beban dari bahan penutup. Penopang rangka atap adalah balok kayu / baja yang disusun membentuk segitiga,disebut dengan istilah kuda-kuda.

Fungsi dari atap adalah :
·         Mencegah pengaruh dari hembusan angin.
·         Penaruh beban sendiri.
·         Curah hujan.
·         Melindungi ruang bawah, manusia serta elemen yang ada dibawahnya dari pengaruh cuaca.
·         Sinar cahaya matahari.
·         Sinar panas matahari.
·         Petir dan bunga api penerbangan.

1.      Kuda-kuda
Kontruksi kuda-kuda adalah suatu komponen rangka batang yang berfungsi untuk mendukung beban atap termasuk juga beratnya sendiri dan sekaligus dapat memberikan bentuk pada atapnya. Kuda – kuda merupakan penyangga utama pada struktur atap. Umumnya kuda-kuda terbuat dari :

·         Kuda-kuda Kayu
Digunakan sebagai pendukung atap dengan bentang sekitar 12 m.
·         Kuda-kuda Bambu
Pada umumnya mampu mendukun beban atap sampai dengan 10 m.
·         Kuda-kuda Baja
Sebagai pendukung atap, dengan sistem frame work atau lengkung dapar mendukung beban atap sampai beban atap sampai dengan bentang 75 m, seperti pada hanggar pesawat, stadion olahraga, bangunan pabrik, dan lain-lain.
·         Kuda-kuda dari Beton Bertulang
Dapat digunakan pada atap dengan bentang sekitar 10 hingga 12 m.
Pada dasarnya konstruksi kuda-kuda terdiri dari rangkaian batang yang selalu membentuk segitiga. Kuda-kuda diletakkan di atas dua tembok selaku tumpuannya. Perlu diperhatikan bahwa tembok diusahakan tidak menerima gaya horizontal maupun momen, karena tembok hanya mampu menerima beban vertikal saja. Kuda-kuda diperhitungkan mampu mendukung beban-beban atap dalam satu luasan atap tertentu. Beban-beban yang dihitung adalah beban mati (yaitu berat penutup atap, reng, usuk, gording, kuda-kuda) dan beban hidup (angin, air hujan, orang pada saat memasang/memperbaiki atap).

Struktur Bawah Bangunan
1.      Pondasi
Pengertian umum pondasi adalah struktur bagian bawah bangunan yang terhubung langsung dengan tanah, atau bagian bangunan yang terletak di bwah permukaan tanah yang berfungsi memikul beban bangunan yang ada diatas nya. Pondasi harus di perhitungkan untuk dapat menjamin kestabilan bangunan terhadap beban bangunan itu sendiri, beban-beban bangunan, gaya-gaya luar seperti tekanan angin gempa bumi, dan lain-lain. Di samping itu, tidak boleh adanya penurunan level melebihi batas yang di izinkan.
Agar kegagalan fungsi pondasi dapat dihindari, maka pondasi bangunan harus diletakkan pada tanah yang cukup keras, padat, dan kuat mendukung beban bangunan tanpa menimbulkan penurunan yang berlebih. Pondasi merupakan struktur dari bangunan yang sangat penting, karena fungsinya adalah menopang bangunan yang ada diatasnya.maka proses pembangunan nya harus memenuhi persyaratan sebagai berikut :
·         Cukup kuat menahan muatan geser akibata muatan tegak kebawah.
·         Dapat menyesuaikan pergerakan tanah yang tidak stabil.
·         Tahan terhadap perubahan cuaca.
·         Tahan terhadap pengaruh bahan kimia.
Suatu sistim harus menjamin dan mampu mendukung bangunan yang ada diatasnya. Untuk itu pondasi harus kuat, stabil, dan aman agar tidak mengalami penurunan, tidak mengalami patah karena akan sulit untuk memperbaiki sistem pondasi. Pembuatan pondasi harus berdasarkan beberapa hal berikut :
·         Berat bangunan yang akan di pikul oleh pondasi.
·         Jenis tanah dan dan daya dukung tanah.
·         Bahan pondasi yang tersedia atau mudah diperoleh di tempet.
·         Alat dan tenaga kerja yang tersedia.
·         Lokasi dan lingkungan pekerjaan.
·         Waktu dan biaya pekerjaan.
Hal yang penting berkaitan dengan pondasi adalah apa yang disebut soil investigation, atau penyelidikan tanah. Pondasi harus di letakkan pada tanah yang keras dan padat. Untuk mengetahui letak/kedalaman tanah yang keras dan tgangan tanah/daya dukung tanah, maka perlu diadakannya penyelidikan tanah, yaitu dengan cara :
·         Pengeboran (Driling), dari lubang hasil pengeboran akan di ketahui contoh-contoh tanah yang kemudian dikirim ke laboratorium mekanika tanah.
·         Percobaan Penetrasi (Penetration Test), dengan cara menggunakan alat yang disebut Sondir Statik Penetrometer. Ujungnya berupa conus yang ditekan masuk ke dalam tanah, dan secaa otomatis akan dibaca hasil sondir tegangan tanah.



2.      Galian Tanah
Galian tanah dan galian-galian lainya harus dilakukan menurut ukuran dalam, lebar, dan sesuai dengan peil-peil yang tercamtum pada gambar. Semua bekas-bekas pondasi lama, dan akar pohon yang terdapat pada bagian pondasi yang dilaksanakan harus dibongkar dan dibersihkan dan dibuang. Bekas pipa yang tidak terpakai harus disumbat. Apabila lokasi yang akan dijadikan bangunan pipa air, pipa gas, pipa pembuangan, kabel listrik, kabel telepon dan sebagainya maka secepatnya diberitahukan kepada konsultan managenen konstruksi atau instansi yang berwenang untuk mendapatkan petunjuk selanjutnya.
Pelaksanaan pekerja/kontraktor bertanggung jawab penuh atas segala kerusakan sebagai akibat dari pekerjaan galian tersebut. Apabila penggalian tersebut melebihi kedalaman yang telah di tentukan maka kontraktor harus mengisi/mengurangi daerah tersebut dengan bahan-bahan yang sesuai dengan syarat-syarat yang telah di tentukan yang sesuai dengan spesifikasi pondasi.
Pekerjaan galian pondasi harus menjada agar lubang galian tersebut bebas dai longsoran tanah di kiri dan kanan nya, sehingga pekerjaan pondasi dapat dilakukan dengan baik dan sesuai dengan spesifikasi yang telah di tentukan.
Pengisian kembali dengan tanah bekas galian di lakukan selapis demi selapis sambil disiram air secukupnya dan di tumbuk sampai padat. Pekerjaan pengesian kembali ini hanya boleh di lakukan setelah dilakukan pemeriksaan dan mendapat persetujuan konsultan manajemen konstruksi, baik mengenai kedalaman, lapisantanahnya maupun jenis tanah galian tersebut.
3.      Struktur Basement
Konstruksi basement sering merupakan solusi yang ekonomis guna mengatasi keterbatasan lahan dalam pembangunan gedung. Tapi sebagai struktur bawah tanah, desain maupun pelaksanaan konstruksi basement perlu dilakukan dengan memperhitungkan banyak hal. Disamping aspek teknis dari basement itu sendiri, tidak kalah pentingnya adalah aspek lingkungannya. Mutu pekerjaan pada konstruksi basement akan sangat mempengaruhi umur dari basement tersebut.
Pengendalian terhadap mutu terpadu sangat diperlukan untuk mencapai produk konstruksi mutu tinggi dan dapat diandalkan. Beberapa hal yang berkaitan dengan galian Basement yang perlu diperhatikan adalah beban dan metode galian. Beban tersebut biasanya berupa beban terbagi rata, beban titik, dan beban garis dan beban terbagi rata memanjang. Sedangkan metode galian dimana dibagi menjadi: open cut, cantilever, angker, dan strut.
Pemilihan metode galian disesuaikan dengan perencanaan bangunan dan konsdisi di lapangan. Pada metode galian basement ada beberapa factor yang perlu diperhatikan antara lain: jenis tanah, kondisi proyek, muka air tanah, besar tekanan tanah yang bekerja, waktu pelaksanaan, analisa biaya dan sebagainya.
Beberapa masalah yang timbul dalam pelaksanaan pembuatan galian basement, seperti penurunan permukaan tanah disekitar galian yang dapat menyebabkan kerusakan structural pada bangunan dekat galian, fan retaknya saluran dan sarana yang lain. Salah satu penyebabnya adalah penurunan permukaan air tanah disekitar galian akibat pemompaan selama konstruksi. Untuk mencegah masalah yang timbul maka metode pemilihan dewatering sangan menentukan.



sekian penjelasan saya, semoga bermanfaat ya !! coba juga lihat artikel menarik lainnya yah bro/sist 
Jefri Harjawinata tanggal : Maret 30, 2017 1 komentar
Berbagi
‹
›
Beranda
Lihat versi web

HALAMAN

▼

Copyright © Ilmu Dasar Teknik Sipil | Powered by Blogger
Design by Hardeep Asrani | Blogger Theme by NewBloggerThemes.com | Distributed By Gooyaabi Templates